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An i t e ra t ive  modificat ion of the nonlinear  Kalman f i l t e r  is p roposed  for  the de te rmina t ion  of 
t i m e - v a r i a b l e  h e a t - t r a n s f e r  coeff icients .  

Stat is t ical  d a t a - p r o c e s s i n g  methods a re  used extensively  in var ious  branches  of science and engineer ing;  
one such method is opt imal  dynamic f i l te r ing  [1], which is highly amenable  to computer  implementa t ion .  This  
method makes  it poss ib le ,  given s pa r s e  data on the object  of invest igat ion,  to obtain an opt imal  e s t ima te  of the 
s tate  vec tor  f r o m  the standpoint of min imiz ing  the r m s  e r r o r ,  without requir ing large  space in computer  m e m -  
o ry ,  since the informat ion s tored  in each computat ional  cycle turns out to be quite l imi ted.  

An intr iguing idea is the appl icat ion of a Kalman f i l ter  for  the solution of var ious  heat-conduct ion p r o b -  
l e m s ,  including inverse  p r o b l e m s  [2, 3], the invest igat ion of which has  taken on specia l  s ignif icance la te ly  in 
connection with the growing demands  on engineer ing  calcula t ions ,  including calculat ions of t e m p e r a t u r e  f ie lds  
and s t r e s s e s .  The indicated method is pa r t i cu l a r ly  appropr ia t e  insofar  as it exhibits  acceptable  accu racy  even 
in si tuations where  re l iab le  data on the boundary and initial  conditions a re  not avai lable .  

Here  we p ropose  a modificat ion of the Kalman f i l te r  whereby ,  in e s s ence ,  the conventional f i l t e r  r e l a -  
t ions a r e  used repeatedly  in each t ime step.  This  approach to the solution of the p rob lem makes  it  poss ib le  
to obtain in each step the g rea t e s t  poss ib le  p rox imi ty  of the e s t ima ted  values  to the s tandard va lues ,  s ince the 
t ransi t ion m a t r i c e s  ~ k + l , k ,  F k + l , k  and G k + t ,  k in the initial equation of the invest igated sy s t em 

a re  ref ined with each subsequent  i tera t ion with al lowance for  the e s t i m a t o r  va lues  obtained for  the s tate  vec tor  
in the p reced ing  i terat ion.  

In Eq. (1) Xk+  1 is the extended s tate  vec to r ,  which includes the t e m p e r a t u r e  field vec tor  T k +  t and the 
vec to r  of boundary p a r a m e t e r s  OCk+~. Both of these vec to r s  a re  unknowns under  the conditions of the given 
p rob lem and a re  to be considered.  

Denoting by ~0) the estimate obtained for the state vector after the j-th iteration in the (k + l)--th 
k+Ik+l 

time step, we write the following algorithm for the iterative filter (with covariance matrix Qk = 0): 

h~llh~.-I :- ,xk+l.a+l -{" ~xk+l l,+ h. ~a'--ll (2) 

p(i) (D(i-l) n ,nr(/-~) (3) 
k-i- l ;h -~ hq- l ,h l ' -h :h '4"h§  ,h 9 

K(i) p~i) H r [H o(i) L,r h + l -  k~-J.a h-'-t ~l--a+lJhHh+J-+-Rh+t] -~, (4) 

where  Y k + l  is the vec to r  of m e a s u r e m e n t s ,  Hk+l  is the cor responding  m a t r i x ,  R k +  1 is the covar iance  ma t r i x  
of the m e a s u r e m e n t  e r r o r s ,  and ~k0+ 1) k '  P,0-'). ,]:-' K 0 )  a r e  the t rans i t ion and covar iance  m a t r i c e s  of the p r e -  

diction e r r o r s  and a weighting m a t r i x ,  r e spec t ive ly ,  all  of which a r e  ref ined in the course  of i terat ion.  

The ma t r i x  ~ 0 - t )  is const ructed in accordance  with Eq. (1), s t a r t ing  with the m a t r i x  fo rm of the f in i te -  
k+l ,K 

di f ference  equation (implicit  scheme)  

A [T (~:,_ 0] X (rk) = C IT (~,:.. j)] X (~_ ~) -!- D JT (~,_ ,)] U (~,) :-  Q (~) W (~), (5) 

in which all the unknowns ( t empera tu re  and h e a t - t r a n s f e r  coefficient) a r e  included in the e s t ima ted  vec tor  X. 
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,~ ( j l  j - l )  f rom the (j - 1 ) - t h  to the j - th  i teration is computed according to the ex-  The predict ion vec tor  ~ k + l l  k+ i  
p ress ion  

~(/Ij - - l )  d ~ ' ( i - - l ) ~ , ( / )  ~ i ~ , ' ( / - - l ) I  i '  
k+l lk+l  ---- ~'k+~.~ ^k'~ _ r k + l ~  ~h, (6) 

in which the vec tor  X includes the pa rame te r  to be identified 

We assume here that the iterative process in the k-th step terminates in the j-th iteration and the transi- 
tion matrices ~'0 -i) and F'0-1) , which are also refined in the iterative process, are formed in accordance 

k+ 1,k k+1,k 
with the equation 

Aj [X (T~._t)] T (Th) = C l [X (Th_~) ] T (~h_l) - -  Dt [X (TL0  ] U t (~l,) "+- Q (~ )  W (lh,), (8) 

in which T(Vk) is the temperature vector and the unknown estimated parameters are replaced by their esti- 
mated values. 

The most complex problem is the selection of the function fl, the form of which is unknown, along with 
the determination of the prediction vector ~k+llk. One advantage of the iterative filter modification is the 
fact that, being able to refine the vector &0[j-i) from iteration to iteration, we can use in place of (7) the 
equation k + Ilk + 1 

a+La+~ = a, ~l~+~ (9) 

not only within the time step, but also the analogous equation 

+ "(:) (1 O) ~ h + l J h  ~ ~ k l k  

in t ransi t ion to the next time step. 

Refe r r ing  to the lterat~ve f i l ter  a lgor i thm,  we note that in finding the est imate of the state vec tor  for the 
�9 + ( I )  first iteration of the current step X~+11k+1 we take as the prediction of the estimate of the temperature field 

vector the usual prediction vector Tk+flk (see, e.g., [3]) and compute the covariance matrix of the refined esti- 
mate according to the equation 

n(;) u < i ) u  ~<i) (11) P k t k  ~ r k ' k - - )  - -  -+'++h l l k r ' k ~ k - - I  �9 

Thus, the algorithm for the iteratlve Kalman filter entails the sequential application of Eqs. (ii), (6), (9), 
(3), (4), and (2). 

We now consider  the select ion of a c r i te r ion  for stopping of the i terative p rocess .  There  are  severa l  
possible stopping cr i te r ia .  F i r s t ,  the i terat ions can be stopped after  some set number of them, but this ap-  
proach is not rel iable enough, because the required number of i terat ions can differ substantially at different 
t imes.  Second, this stopping cr i te r ion  can be an es t imate  of the norm of the difference of the vec tors  Yk+t  
and H k + I X ~ +  11 k + 1' where the es t imated-s ta te  vector  X k +I] k + I is in terpreted as  the resul t  of the last  i t e r a -  
tion. This c r i te r ion  is wri t ten formal ly  

~u u ~ ( i )  
- -  f / h ~ l A k _ _ l l h _ , _ l !  <{~. 

Final ly,  a third cr i ter ion is an est imate  of the norm of the difference of the resul ts  of two  success ive  
i terat ions:  

. , - -  / k  .--' 1 ! h T l  |1  ~ L ~  E l  �9 

This cr i te r ion  is the mos t  p rac t ica l  and is therefore  the mos t  commonly used. 

To speed convergence of the i terat ive p rocess  we can use a method based on the calculation of the sca la r  
pe r formance  figure of a f i l ter  [4] 

,. n(i) ~ v  R ~-JfH ~ ( i j i - l )  ,Jh~-ll(i) = . .  i i l / :_ lAh_. l lk ,  l , U  ~( i : i - - l ;  --Yh_._z] r lH::+trh--)Ph+th+l J,-U t I,-.1 a--~:a--1. - -Y~:- l ] ,  (12) 

which is the quadrat ic  fo rm of the predicted measu remen t  e r r o r s .  

Making use of the proper t ies  of a normal  Gaussian distribution of random var iables ,  which governs the 
deviation of a measu remen t  f rom its standard value, and knowing that the value of this deviation is with 
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probabili ty 0.997 not grea ter  than 3a (where ~ charac te r i zes  the deviations of the measured  parameters ) ,  
we can es t imate  the threshold value of this quantity J ,  which is equal to 9. 

The speedup of convergence entails selection of a special  weighting factor  

fli) 
r  'Jk+ 1 ~'h+l = , (13) 

9 

which increases  the elements  of the weighting mat r ix ,  acting on the covariance mat r ix  of the prediction e r r o r s  
with the corresponding replacement  of express ion (3) by the equation 

~/) r n , ( i - l ) ,  n.r(;-~) (14) 
P h +  I Jk =:  O h J -  !"a. 'h+ 1 ,h rh!h '4"h-~-  1 ,h �9 

The application of this method makes it possible to decrease  the number of i terat ions and, accordingly,  
to diminish the time of solution. An essent ial  considerat ion,  par t icu lar ly  in the solution of the inverse hea t -  
conduction problem,  is the equation of the e r r o r s  of measurements  distributed according to a normal  Gaussian 
law with var iance  a 2. The convergence of the f i l ter  takes place in a so-cal led  convergence tube, whose d iam-  
eter  in each step is determined by the elements  of the mat r ix  Pk/k, which decrease  with t ime (the norm of Pk/k 
tends to the norm of the covariance mat r ix  of the measurement  e r r o r s  Rk). Thus,  the est imated values can 
converge,  ra ther  than to the standard,  to values that differ f rom the standard values by the amount of the m e a -  
surement  e r r o r  (in conversion of the measured  pa rame te r s  into est imated paramete r s ) .  

In connection with the fact  that, as tests  have shown, the e r r o r s  of tempera ture  measuremen t s  can have 
a significant influence on the convergence of the est imated vector  a we encounter the problem of smoothing of 
the measuremen t s ,  i .e. ,  their p re l iminary  ref inement  p r io r  to application of the f i l ter  algorithm. The follow- 
ing scheme is proposed as the method of smoothing of the measurements .  At a given measured  point a small  
symmet r i c  "smoothing" time interval is chosen,  and inside this interval additional measurements  of the t em-  
pera ture  at the given point are  made. If, for example,  n measurements  are  made in this interval ,  then the 
following quantity is chosen as the measuremen t  to be used in the f i l ter  a lgori thm: 

y = Y l  - Y 2  - -  . . .  - Y ,  
, ( 1 5 )  

r /  

where Yl . . . . .  Yn are  the measurements  inside the given time interval.  

Studies have shown that the deviation charac te r i s t i c  a s obtained after the smoothing p rocess  differs f rom 
the normal  charac te r i s t i c  a by a fac tor  vrn, i .e. ,  as = aAfn. 

Convergence can also be improved by parti t ioning the f i r s t  time step into substeps,  in each of which it is 
possible to use both the i terat ive and the noniterative f i l ter  modifications.  This art if ice has the effect of 
bringing the es t imator  values of the pa r ame te r  to be identified close to the standard even in the f i r s t  time 
steps. 

A s an i l lustrat ion charac te r iz ing  the efficiency of the proposed procedure  we give the example of identi- 
fication of the boundary conditions (determination of the hea t - t r ans fe r  coefficient ~) for an infinite plate of 
thickness L = 0.04 m with simultaneous reconstruct ion of its t empera ture  field for  an unknown initial d is t r ibu-  
tion. 

At one boundary we adopt zero-va lued  Neumann boundary conditions (ST/0n = 0) and assume that Cauchy 
boundary conditions hold at the other boundary. Here the tempera ture  of the medium is T m = 600~ In r e -  
gard to the hea t - t r ans fe r  coefficients we identify two different functions ~I(T) and n%(T). As the standard func-  
tions used to obtain the "measurements"  we adopt 

50 --  0.03:rrn [1 0.5 1.23. l0 - 5 - 1 . 0 5 -  10-87~n 
- - -  - -  T ~l (T) = . . . .  

L [ L 2 

0.5 exp [--(1.23- 10 -~ - -  1.05 �9 19-8T~ T;L~] I ~/rn2" ~ 

and the function o~ff) shown in Fig. 1. The tempera tu re  dependence of the thermal  conductivity and thermal  
diffusivity are  given by the express ions  

}. = 50 --  0.03T [W/m. "K]; 

a =-- 1.23. 10 - 5 -  1.05. lO-*Y [m2/see]. 
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Fig. i. Results of identification of the heat- 
transfer coefficient (o~, W/m2.deg K, r, h; 
S = standard dependence). 

We work with a space-time computing grid using steps h = 0.01 m (near the boundaries h = 0.005 m) and 
AT = 30 min. The measured parameter is the temperature at the boundary node, where Cauchy boundary 
conditions hold. 

The estimate of the initial state vector is chosen arbitrarily. In particular, we use: ~?i0/0 = 50~ ~ = 
200 [W/m 2 �9 degK]. 

The results of identification of the function ~(T) are given in Fig. 1 in which the estimator curve 1 cor- 
responds to the case where the first time step is not partitioned into substeps, and curve 2, which actually 
merges quickly with the standard curve (S), is obtained after partitioning of the first time step into 10 substeps 
(At i = 3 rain). As for the identification of c~i(~), the estimator curve 1 with partitioning of the first step into 5 
substeps (At i = 6 min) follows the standard curve so closely that the difference between them cannot be dis- 
cerned even by large-scale plots (Fig. 2). The reconstruction of the temperature field of the plate reveals that 
the deviation of the estimator values from the standard values is not greater than 0.5 to 1.0% even in the first 
t ime steps. 

It would be natural  to expect the same effect to be attainable by means of a noniterative fi l ter  with a co r -  
responding part i t ion of the t ime steps. The solution of individual problems shows, however, that such a 
change in the procedure  increases  the time of solution and can resul t  in a deter iorat ion of convergence as well 
as the acquisit ion of resul ts  differing f rom the standard values. This fact is attributable to severa l  cons idera -  
tions. 

First, the number of iterations in the iterative modification differs appreciably at different times, elicit- 
ing a variable time step in the noniterative filter in different parts of the nonsteady process (an effect that com- 
plicates the solution algorlthm considerably). 

Second, the time of solution increases abruptly, since the covariance matrix Pk/k in the iterative filter 
is determined only once for each step, whereas the application of the noniterative filter with a correspondingly 
smaller time step requires the determination of Pk/k for each (shorter) step. 

Third, as we know from filtering theory, the norm of the covariance matrix Pk/k and, accordingly, the 
normal of the weighting matrix Kk + i represent monotonically decreasing functions of the number of measure- 
ments, weakening the effect of new measurements on the progress of the solution, i.e., investing the filter 
with a certain "sluggishness," which naturally affects its convergence. 

The solutions obtained in the identification of the function al(r ) by means of iterative (curve 1) and non- 
iterative (curve 2) filters are compared in Fig. 2. In time steps 3-7 curve 2 practically coincides with curve 1 
and the standard (S) curve al(r), and then in steps 12-14 it already begins to depart from it. By the 24th step 
the deviation is 2 5%. 

It is important to note, however, that in the given comparison the iterative filter modification is not 
against the noniterative modification under the condition that the algorithm for the latter does not include mea- 
sures for improving the convergence of the filter, and such measures would unquestionably improve the results 
obtained by the noniterative scheme (several publications touch on techniques for the improvement of conver- 
gence; see, e.g., [3]). 
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Fig. 2. Comparison of solutions obtained by means of i terat ive and noniterative f i l -  
t e r s  (~I, W/m2" deg K; T, h). 

Fig. 3. Measurement  points in the investigated body (boundary conditions). 1) 0T/ 
On = 0; II) T = const; IiD 0T/0n = 0; IV) ~ = 5000 W/m 2-deg E, T O = 373~ V) 0T/0n = 
0; VI) ~ = 11,400 W/m 2" deg E,  T m =1073~ 

TABLE 1. Dependence of Est imate  E r r o r s  ( ~ / k - a S )  o n M e a s u r e -  
ment E r r o r s  

'~k, h 
I 2 3 4 5 6 7 8 

0,003 54 26 13 7 4 2,3 1,3 0,8 
0,3 54 37 21 I0,5 6 2,8 2,4 2,1 
1,0 --37 25 27 8 5 --4,5 - -3 ,6  3.3 

"~h, h 
o'. "K 16 

0,003 
0,3 
1,0 

9 

0,6 
0,7 

--1 

lO I II 

--0,3 --0,3 
--4,9 --I,3 
--5,6 I --3,1 

12 [ 13 

--0,5 i --0,3 --3,8 0,9 
- -9  4,3 

14 [ 15 

--0.5 . --0.6 
-6,8 4.2 
--5,6 8,7 

--0,8 
0,1 
1 

We have car r ied  out a pract ica l  analysis  of the stability of the solutions obtained here .  Accordingly,  the 
a rb i t ra r i ly  selected initial es t imates  of the state vector  are  varied over a wide range (the tempera ture  f rom 
- 5 0  to +100~ the hea t - t r ans fe r  coefficient f rom 100 to 500 W/m 2" deg K; the time step f rom 60 to 0.3 rain), 
along with the composition of the measu remen t  vector .  Also,  we have investigated the influence of possible 
e r r o r s  in the initial data, i .e. ,  measu remen t  e r r o r s ,  on the final optimal es t imates .  Whereas  the influence 
of the initial es t imates  and time step is pract ica l ly  imperceptible (at any rate within the l imits  of a 200-fold 
var ia t ion of AT the dispari ty in the es t imates  cannot be discerned in the plotted curves) ,  the measurement  
e r r o r s  induce a certain sca t te r  of the es t imates  (see Table 1), which, however ,  cannot in any sense of the 
word qualify as a sign of incor rec tness .  If we allow for the fact  that the procedure  provides a facility for 
smoothing of the measurements  in any t ime step, the solution turns  out to be pract ical ly  stable. 

To i l lustrate the invariance proper t ies  of the procedure  under the selected measurement  vector we con- 
sider the more  typical two-dimensional  problem of nonlinear nonsteady heat conduction, where simultaneously 
with identification of the hea t - t r ans fe r  boundary conditions the tempera ture  field is reconstructed (Fig. 3). The 
results  of the solution, which a re  given in Fig. 4, show that convergence of the es t imates  of the identified 
pa rame te r  a to the standard value 5000 W/m 2. deg K is observed independently of whatever  composition is 
chosen for the measu remen t  vector .  The measuremen t s  were  per formed at nodes 10, 19, 2 2 ,  and 28 of the 
grid (curve 1) and at nodes 10, 19, 22, and 27 (curve 2). 

The numerica l  experiment  indicates prac t ica l  regular i ty  on the part  of the resulting solutions in the case 
cr = const.  The stabil i ty of the solution for a t i m e - v a r i a b l e h e a t - t r a n s f e r  coefficient is current ly undcr investi- 

gation and will be the subject of a special  discussion.  
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Fig. 4. Results of identification of the heat-  
t ransfer  coefficient in the two-dimensional 
problem (a, W/m 2. deg K; % h). 

Thus, the use of an iterative f i l ter  is adequately effective for the solution of direct  and inverse heat- 
conduction problems,  part icularly in conjunction with smoothing of the measurements and partitioning of the 
f i r s t  time steps into smaller  substeps. 

Xk, Tk, ak 
r Fk+*,k, 
Gk+l,k, 4"k+i, k, 
Fi,+,,k 
U k, Wk 
Pk/k, Pk+I/k,  Rk+l  
Kk+1 
Hk+l 
A, C, D, Q 

Vk+l 
I1-11 
Jk 
Sk+l 

X 
a 
~T 
h 

are the state vectors;  

N O T A T I O N  

a r e  the trans i t ion  m a t r i c e s ;  
are  the control  and noise  v e c t o r s ,  respect ive ly ;  
are the covariance matr ices;  
is the weighting matrix; 
is the matr ix of measurements;  
are the matr ices;  
a re  the vector  measurements;  
is the matr ix norm; 
is the scalar  performance figure; 
is the weighting factor; 
is the heat - t ransfer  coefficient; 
is the thermal conductivity; 
is the thermal diffusivity; 
is the time step; 
is the space step of the computing grid. 
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