AN ITERATIVE FILTER FOR SOLUTION OF THE
INVERSE HEAT-CONDUCTION PROBLEM
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An iterative modification of the nonlinear Kalman filter is proposed for the determination of
time-variable heat-transfer coefficients.

Statistical data-processing methods are used extensively in various branches of science and engineering;
one such method is optimal dynamic filtering [1], which is highly amenable to computer implementation. This
method makes it possible, given sparse data on the object of investigation, to obtain an optimal estimate of the
state vector from the standpoint of minimizing the rms error, without requiring large space in computer mem-
ory, since the information stored in each computational cycle turns out to be quite limited.

An intriguing idea is the application of a Kalman filter for the solution of various heat-conduction prob-
lems, including inverse problems [2, 3], the investigation of which has taken on special significance lately in
connection with the growing demands on engineering calculations, including calculations of temperature fields
and stresses. The indicated method is particularly appropriate insofar as it exhibits acceptable accuracy even
in situations where reliable data on the boundary and initial conditions are not available,

Here we propose a modification of the Kalman filter whereby, in essence, the conventional filter rela-
tions are used repeatedly in each time step. This approach to the solution of the problem makes it possible
to obtain in each step the greatest possible proximity of the estimated values to the standard values, since the
transition matrices ®k+1,k, Fk+1,k and G+ k in the initial equation of the investigated system

Xior = O3 Xy = FronaUs + Gt W 1)
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are refined with each subsequent iteration with allowance for the estimator values obtained for the state vector
in the preceding iteration,

In Eq. (1) Xk 41 is the extended state vector, which includes the temperature field vector Ty ;1 and the
vector of boundary parameters o +1. Both of these vectors are unknowns under the conditions of the given
problem and are to be considered.

Denoting by x40 the estimate obtained for the state vector after the j-th iteration in the (k + 1)-th

k+1k+
time step, we write the following algorithm for the iterative filter (with covariance matrix Qi = 0):
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where Yy 41 is the vector of measurements, Hk+1 is the corresponding matrix, Ry ;¢ is the covariance matrix
of the measurement errors, and @EH) K’ k+1|k k) are the transition and covariance matrices of the pre-

diction errors and a weighting matrix, respectively, all of which are refined in the course of iteration,
The matrix Qg;?,k is constructed in accordance with Eq. (1), starting with the matrix form of the finite-
difference equation (implicit scheme)
AT (t,_)iX () =C[T (v, )X (v, ) -- D|T(r,_)U(r,) - Q(t,) W (1), (5)

in which all the unknowns (temperature and heat-transfer coefficient) are included in the estimated vector X.
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The prediction vector Xy +1]k+1

pression

fromthe (j —1)-thto the j-th iteration is computed according to the ex-

Xl = oG RX + R4, (6)
in which the vector X includes the parameter to be identified
a’(l"'#lll‘%l = £(T,,4). M

We assume here that the iterative process in the k-th step terminates in the j-th iteration and the transi-

tion matrices @'0'1)’1{ and F 0-1)k which are also refined in the iterative process, are formed in accordance
+1,
with the equation

AX(m )T (t) = Ci X (v _ I T(1;,_y) + Dy [X (t,_)1 U' (1)) + Q1) W (1)), ®

in which T (7) is the temperature vector and the unknown estimated parameters are replaced by their esti-
mated values,

The most complex problem is the selection of the function f;, the form of which is unknown, along with
the determination of the prediction vector aﬁﬂ‘k One advantage of the iterative filter modification is the
fact that, being able to refine the vector a(J "1) from iteration to iteration, we can use in place of (7) the
equation

&I(tl-‘»/l—k]-)f-l = &};':1’[;;—;-1 9
not only within the time step, but also the analogous equation
&h+1|h = &;‘;'ii 10
in transition to the next time step.

Referring to the iterative fllter algorithm, we note that in finding the estimate of the state vector for the

first iteration of the current step X +1|k +1 We take as the prediction of the estimate of the temperature field

vector the usual prediction vector Ty . 4|k (see, e.g., [3]) and compute the covariance matrix of the refined esti-
mate according to the equation

Pup = Pih_, — KIPH WPrA—1. 11)

Thus, the algorithm for the iterative Kalman filter entails the sequential application of Eqs. (11), (6), (9),
(3), 4), and (2).

We now consider the selection of a criterion for stopping of the iterative process. There are several
possible stopping criteria. First, the iterations can be stopped after some set number of them, but this ap-
proach is not reliable enough, because the required number of iterations can differ substantially at different
times. Second, this stopping criterion can be an estimate of the norm of the difference of the vectors Yk +
and HkHX({() +1lk+1 where the estimated-state vector Xk +lk+1 isinterpreted as the result of the last itera-
tion. This crlterxon is written formally

; )
WYy — H o Xe gl < e

Finally, a third criterion is an estimate of the norm of the difference of the results of two successive
iterations:

!lﬂ«i’-lykﬂ — 'il(a/:llf)k_—lu < &).
This criterion is the most practical and is therefore the most commonly used,

To speed convergence of the iterative process we can use a method based on the calculation of the scalar
performance figure of a filter [4]
J(’_)l = [H ,Xh l'k—l — Yh_-_llr [H!;-ipfzilllh”;—:-l - RI;-!]_1[H);-.1X‘(!”—';':L1 - YI:-(]: (12)
which is the quadratic form of the predicted measurement errors.

Making use of the properties of a normal Gaussian distribution of random variables, which governs the
deviation of a measurement from its standard value, and knowing that the value of this deviation is with

1374



probability 0,997 not greater than 30 (where v characterizes the deviations of the measured parameters),
we can estimate the threshold value of this quantity J, which is equal to 9.

The speedup of convergence entails selection of a special weighting factor

R J(/)
Sih ==, 13)
9
which increases the elements of the weighting matrix, acting on the covariance matrix of the prediction errors

with the corresponding replacement of expression (3) by the equation
Pl == SIS Prn®ET . a4

The application of this method makes it possible to decrease the number of iterations and, accordingly,
to diminish the time of solution. An essential consideration, particularly in the solution of the inverse heat-
conduction problem, is the equation of the errors of measurements distributed according to a normal Gaussian
law with variance g?, The convergence of the filter takes place in a so-called convergence tube, whose diam-
eter in each step is determined by the elements of the matrix Py/, which decrease with time (the norm of Py
tends to the norm of the covariance matrix of the measurement errors Rig). Thus, the estimated values can
converge, rather than to the standard, to values that differ from the standard values by the amount of the mea-
surement error (in conversion of the measured parameters into estimated parameters).

In connection with the fact that, as tests have shown, the errors of temperature measurements can have
a significant influence on the convergence of the estimated vector @ we encounter the problem of smoothing of
the measurements, i.e., their preliminary refinement prior to application of the filter algorithm. The follow-
ing scheme is proposed as the method of smoothing of the measurements. At a given measured point a small
symmetric "smoothing" time interval is chosen, and inside this interval additional measurements of the tem-
perature at the given point are made, If, for example, n measurements are made in this interval, then the
following quantity is chosen as the measurement to be used in the filter algorithm:

yo Y18 n—y ’ (15)

where yy,...,yn are the measurements inside the given time interval,

Studies have shown that the deviation characteristic og obtained after the smoothmg process differs from
the normal characteristic ¢ by a factor vn, i.e., og = 0/,

Convergence can also be improved by partitioning the first time step into substeps, in each of which it is
possible to use both the iterative and the noniterative filter modifications. This artifice has the effect of
bringing the estimator values of the parameter to be identified close to the standard even in the first time
steps.

As an illustration characterizing the efficiency of the proposed procedure we give the example of identi-
fication of the boundary conditions (determination of the heat-transfer coefficient a) for an infinite plate of
thickness L = 0.04 m with simultaneous reconstruction of its temperature field for an unknown initial distribu-
tion,

At one boundary we adopt zero-valued Neumann boundary conditions (3T/dn = 0) and assume that Cauchy
boundary conditions hold at the other boundary. Here the temperature of the medium is Ty, = 600°C, In re-
gard to the heat-transfer coefficients we identify two different functions o () and 0,(7). As the standard func-
tions used to obtain the "measurements” we adopt

(1) = 50— 0.03Tm ([, g 1.23-107° —1.05- 1077y,
L { L2

—05exp[—(1.23-107 — 1.05 - 10-87““;7/1,2]} W /m? . °K]

and the function o, (1) shown in Fig. 1. The temperature dependence of the thermal conductivity and thermal
diffusivity are given by the expressions

7. =50 —0.03T (W/m- °K]

a-1.23.107°—1.05. 10787 (m*/sec].
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Fig. 1. Results of identification of the heat-
transfer coefficient (@, W/m?-deg K, 7, h;
S = standard dependence).

We work with a space—time computing grid using steps h = 0,01 m (near the boundaries h = 0.005 m) and
AT = 30 min. The measured parameter is the temperature at the boundary node, where Cauchy boundary
conditions hold.

The estimate of the initial state vector is chosen arbitrarily, In particular, we use: rrio/o = 50°C; ayyy =
200 [W/m?.degK].

The results of identification of the function oy (r) are given in Fig. 1 in which the estimator curve 1 cor-
responds to the case where the first time step is not partitioned into substeps, and curve 2, which actually
merges quickly with the standard curve (S), is obtained after partitioning of the first time step into 10 substeps
(At{ = 3 min). As for the identification of & (1), the estimator curve 1 with partitioning of the first step into 5
substeps (AT; = 6 min) follows the standard curve so closely that the difference between them cannot be dis-
cerned even by large-scale plots (Fig. 2). The reconstruction of the temperature field of the plate reveals that
the deviation of the estimator values from the standard values is not greater than 0.5 to 1.0% even in the first
time steps.

It would be natural to expect the same effect to be attainable by means of a noniterative filter with a cor-
responding partition of the time steps. The solution of individual problems shows, however, that such a
change in the procedure increases the time of solution and can result in a deterioration of convergence as well
as the acquisition of results differing from the standard values. This fact is attributable to several considera-
tions,

First, the number of iterations in the iterative modification differs appreciably at different times, elicit-
ing a variable time step in the noniterative filter in different parts of the nonsteady process (an effect that com-
plicates the solution algorithm considerably),

Second, the time of solution increases abruptly, since the covariance matrix Py in the iterative filter
is determined only once for each step, whereas the application of the noniterative filter with a correspondingly
smaller time step requires the determination of Py for each (shorter) step.

Third, as we know from filtering theory, the norm of the covariance matrix Py/ and, accordingly, the
normal of the weighting matrix Kk +, represent monotonically decreasing functions of the number of measure-
ments, weakening the effect of new measurements on the progress of the solution, i.,e., investing the filter
with a certain "sluggishness," which naturally affects its convergence,

The solutions obtained in the identification of the function @, (r) by means of iterative (curve 1) and non-
iterative (curve 2) filters are compared in Fig, 2, In time steps 3-7 curve 2 practically coincides with curve 1
and the standard (S) curve ¢;(T), and then in steps 12-14 it already begins to depart from it. By the 24th step
the deviation is 25%.

It is important to note, however, that in the given comparison the iterative filter modification is not
against the noniterative modification under the condition that the algorithm for the latter does not include mea-
sures for improving the convergence of the filter, and such measures would unquestionably improve the results
obtained by the noniterative scheme (several publications touch on techniques for the improvement of conver-

gence; see, e.g., [3]).
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Fig. 2, Comparison of solutions obtained by means of iterative and noniterative fil-

ters (o, W/m?-deg K; 7, h).

Fig, 3.

Measurement points in the investigated body (boundary conditions).

1) 8T/

dn = 0; I) T = const; II) 8T/0n = 0; IV) @ = 5000 W/m?- deg K, T, = 373°K; V) 8T/on =
0; VI) @ = 11,400 W/m?- deg K, Ty, =1073°K.

TABLE 1, Dependence of Estimate Errors (a4~ @g) on Measure-

ment Errors

K Tre b
i 1 2 i 3 4 5 1 s 7 | s
0,003 54 % ! 13 7 4 \ 2,3 13 | 0.8
0,3 54 37 | 2 10,6 6 | 28 2,4 | 2.1
1,0 —37 %5 o 8 5 I —45 | —3,6 3,3
N ‘tk.h
oK 9 w | n 12 13 | u 15 | 1s
0,003 0,6 -0.3 ‘ —0,3 | —0,5 | —0,3 | —0,5 | —0,6 | —0,8
0,3 0.7 | —49 | —1,3 | —38 0,9 | 6,8 4,2 ‘ 0,1
1,0 |-t —5,6 i 3,1 | —9 43 | —5.6 87 | 1

We have carried out a practical analysis of the stability of the solutions obtained here. Accordingly, the
arbitrarily selected initial estimates of the state vector are varied over a wide range (the temperature from
—50 to +100°C; the heat-transfer coefficient from 100 to 500 W/m?2- deg K; the time step from 60 to 0.3 min),
along with the composition of the measurement vector. Also, we have investigated the influence of possible
errors in the initial data, i.e., measurement errors, on the final optimal estimates. Whereas the influence
of the initial estimates and time step is practically imperceptible (at any rate within the limits of a 200-fold
variation of AT the disparity in the estimates cannot be discerned in the plotted curves), the measurement
errors induce a certain scatter of the estimates (see Table 1), which, however, cannot in any sense of the
word qualify as a sign of incorrectness. If we allow for the fact that the procedure provides a facility for
smoothing of the measurements in any time step, the solution turns out to be practically stable.

To illustrate the invariance properties of the procedure under the selected measurement vector we con-
sider the more typical two-dimensional problem of nonlinear nonsteady heat conduction, where simultaneously
with identification of the heat-transfer boundary conditions the temperature field is reconstructed (Fig. 3). The
results of the solution, which are given in Fig, 4, show that convergence of the estimates of the identified
parameter « to the standard value 5000 W/m?- deg K is observed independently of whatever composition is
chosen for the measurement vector. The measurements were performed at nodes 10, 19, 22, and 28 of the
grid (curve 1) and at nodes 10, 19, 22, and 27 (curve 2),

The numerical experiment indicates practical regularity on the part of the resulting solutions in the case
o= const, The stability of the solution for a time- variableheat-transfer coefficient is currently under investi-
gation and will be the subject of a special discussion.
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Fig. 4. Results of identification of the heat-
transfer coefficient in the two-dimensional
problem (@, W/m?-deg K; 7, h).

Thus, the use of an iterative filter is adequately effective for the solution of direct and inverse heat-
conduction problems, particularly in conjunction with smoothing of the measurements and partitioning of the
first time steps into smaller substeps.
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NOTATION

are the state vectors;

‘are the transition matrices;

are the control and noise vectors, respectively;
are the covariance matrices;

is the weighting matrix;

is the matrix of measurements;

are the matrices;

are the vector measurements;

is the matrix norm;

is the scalar performance figure;

is the weighting factor;

is the heat-transfer coefficient;

is the thermal conductivity;

is the thermal diffusivity;

is the time step;

is the space step of the computing grid.
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